An empty interval in the spectrum of small weight codewords in the code from points and k-spaces of PG(n, q)

نویسندگان

  • Michel Lavrauw
  • Leo Storme
  • Péter Sziklai
  • Geertrui Van de Voorde
چکیده

Let Ck(n, q) be the p-ary linear code defined by the incidence matrix of points and k-spaces in PG(n, q), q = p, p prime, h ≥ 1. In this paper, we show that there are no codewords of weight in the open interval ] q −1 q−1 , 2q[ in Ck(n, q) \ Cn−k(n, q) ⊥ which implies that there are no codewords with this weight in Ck(n, q) \ Ck(n, q) ⊥ if k ≥ n/2. In particular, for the code Cn−1(n, q) of points and hyperplanes of PG(n, q), we exclude all codewords in Cn−1(n, q) with weight in the open interval ] q −1 q−1 , 2q[. This latter result implies a sharp bound on the weight of small weight codewords of Cn−1(n, q), a result which was previously only known for general dimension for q prime and q = p, with p prime, p > 11, and in the case n = 2, for q = p, p ≥ 7 ([4],[5],[7],[8]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On codewords in the dual code of classical generalized quadrangles and classical polar spaces

In [8], the codewords of small weight in the dual code of the code of points and lines of Q(4, q) are characterized. Using geometrical arguments, we characterize the codewords of small weight in the dual code of the code of points and generators of Q(5, q) and H(5, q). For the dual codes of the codes of Q(5, q), q even, and Q(4, q), q even, we investigate the codewords with the largest weights....

متن کامل

On codewords in the dual code of classical generalised quadrangles and classical polar spaces

In [9], the codewords of small weight in the dual code of the code of points and lines of Q(4, q) are characterised. Inspired by this result, using geometrical arguments, we characterise the codewords of small weight in the dual code of the code of points and generators ofQ(5, q) andH(5, q), and we present lower bounds on the weight of the codewords in the dual of the code of points and k-space...

متن کامل

Codewords of small weight in the (dual) code of points and k-spaces of PG(n, q)

In this paper, we study the p-ary linear code Ck(n, q), q = p , p prime, h ≥ 1, generated by the incidence matrix of points and k-dimensional spaces in PG(n, q). We note that the condition k ≥ n/2 arises in results on the codewords of Ck(n, q). For k ≥ n/2, we link codewords of Ck(n, q)\ Ck(n, q) ⊥ of weight smaller than 2q to k-blocking sets. We first prove that such a k-blocking set is unique...

متن کامل

On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual

In this paper, we study the p-ary linear code Ck(n, q), q = ph, p prime, h 1, generated by the incidence matrix of points and k-dimensional spaces in PG(n, q). For k n/2, we link codewords of Ck(n, q) \ Ck(n, q)⊥ of weight smaller than 2qk to k-blocking sets. We first prove that such a k-blocking set is uniquely reducible to a minimal k-blocking set, and exclude all codewords arising from small...

متن کامل

The Dual Code of Points and t-Spaces in the Projective Space

The most important results on C⊥ t (n, q), the dual code of points and t-spaces in PG(n, q) are presented. We focus on the minimum distance and on the small weight codewords. In the third section, a recent result about the classification of the small weight codewords in C⊥ n−1(n, q), q even, is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009